Section: Research Program
Processes in random environment
In the course of developing a quantitative theory of stochastic homogenization of discrete elliptic equations, we have introduced new tools to quantify ergodicity in partial differential equations. These tools are however not limited to PDEs, and could also have an impact in other fields where an evolution takes place in a (possibly dynamic) random environment and an averaging process occurs. The goal is then to understand the asymptotics of the motion of the particle/process.
For a random walker in a random environment, the Kipnis-Varadhan theorem ensures that the expected squared-position of the random walker after time
Similar questions arise when the medium is reactive (that is, when the potential is modified by the particle itself). The approach to equilibrium in such systems was observed numerically and explained theoretically, but not completely proven, in [50] .